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CONSIDER THE FOLLOWING SCENARIO
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A TALE OF THREE LISTINGS
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IMAGES PLAY A CENTRAL ROLE IN MANY MARKETPLACES
Lodging (e.qg., Airbnb)

Units with verified photos (taken by Airbnb’s photographers)
generate additional revenue of $2,521 per year on average.

For an average Airbnb property (booked for 21.057% of the days
per month), this corresponds to 17.51% increase in demand due to
verified photos.

Zhang, S., Lee, D., Singh, P. V., & Srinivasan, K. (2017). How Much |Is an Image Worth?
Airbnb Property Demand Estimation Leveraging Large Scale Image Analytics.
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IMAGES PLAY A CENTRAL ROLE IN MANY MARKETPLACES
Dating (e.g., Hinge)

Best Photo Practices for Women

Best Photo Practices for Men

Wear hair up Look away

Look ahead

You're 102% more
Smile without teeth likely to receive a like.’

You're 27% more likely

. v You re 74% more
to receive a like.

likely to receive a like.”

Smile with teeth You’re 43% more likely

Stand alone to receive a like .’ . Stand alone

You're 76% more likely N
k! p ” o .
t0 TacBivE IR * You're 69% more likely

>

e to receive a like.”

BB pared to female photos with hair down

28Compared to fem
3: Compares to fen eeth
Bl Compared to group photos for females

You're 11% more likely
to receive a like.’

1. Compared to male photos smiling with teeth
2. Compared to male photos not looking at the camera

L
3. Compared to group photos for men Ph n ge
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https://medium.com/@Hinge/hinge-the-relationship-app-28f1000d5e76
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RESEARCH QUESTIONS

RQ1: Can human raters reliably judge the quality of
marketplace images?

RQ2: Can we build models to reliably predict high v.s. low
quality marketplace images?

RQ3: What characteristics make high quality marketplace
images?

RQ4: Does image quality affect marketplace outcomes?
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OUTLINE
Datasets Annotating Modeling Marketplace Design
Image Quality Image Quality Outcomes Implications
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SUMMARY OF RESULTS

* We created a dataset of real marketplace images (25,000 images)
with reliable human-rated quality labels

* \We were able to model and predict image quality with decent
accuracy (=87%).

* We showed that predicted image quality is associated with higher
likelihood of sales through collaboration with eBay

* Through user experiment, we also showed that high quality user-
generated marketplace images selected by our models outperform
stock imagery in eliciting perceptions of trust from users
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OUTLINE
Datasets Annotating Modeling Marketplace Design
Image Quality Image Quality Outcomes Implications
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OUTLINE
Datasets Annotating Modeling Marketplace Design
Image Quality Image Quality Outcomes Implications
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DATASETS

Public

Shoes: ~12,000
Handbags: ~12,000

Annotated with image
quality labels

i Google Al €Pay

Private

epay

Shoes: ~132,000
Handbags: ~32,000

With information associated
with views and sales
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OUTLINE
Datasets Annotating Modeling Marketplace Design
Image Quality Image Quality Outcomes Implications
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ANNOTATING IMAGE QUALITY

1. Pilot

* 50 images per batch
* 3 annotators per batch
* Rate each image from 1 (not appealing) to 5 (appealing)

* Open-ended questions to monitor task understanding

2. Label
* ~20,000 images per product category
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ANNOTATING IMAGE QUALITY

1. Pilot 3. Filter
* 50 images per batch * Standardize scores per rater
* 3 annotators per batch * Filter out images with high standard

. , , deviation across raters
* Rate each image from 1 (not appealing) to 5 (appealing)

, , . * Average pairwise Pearson’s: 0.70
* Open-ended questions to monitor task understanding

4. Discretize

2. Label

Standardized score distributions

Handbags

» ~20,000 images per product category 5000 zsooj_u

0- 0.

5000 Shoes
5000+ 2500 . . -
0 0 Negative Neutral Positive
b1
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OUTLINE
Datasets Annotating Modeling Marketplace Design
Image Quality Image Quality Outcomes Implications
o o o o .
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MODELING IMAGE QUALITY

Prediction
Model

* Fine-tuned a pre-trained Inception v3 network architecture provided by
PyTorch, after removing the last fully connected layer and replacing it
with a linear map down to 3 output dimensions (bad, neutral, good).

* | abel smoothing: uncertainty in the data

Evaluation
* “ftorced-choice” — removing neutral output

* By this metric, our best shoe model achieved 84.34% accuracy and our

best handbag model achieved 89.53%. (outperforms an aesthetic quality
baseline model fine tuned on AVA dataset — 68.8%, and 78.8%)
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MODELING IMAGE QUALITY

Understanding: qualitative analysis of product photography tutorials

e Background (mentioned in 57% of the tutorials): white, clean, uncluttered
e Lighting (57%): soft, good, bright

e Angles (40%): multiple angles, front, back, top, bottom, details

e Context (29%): in use

* Focus (22%): sharp, high resolution

* Post-Production (22%): white balance, lighting, exposure

* Crop (14%): zoom, scale
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MODELING IMAGE QUALITY

Understanding: extracting corresponding features computationally

Feature Name Definition Low High Feature Name Definition Low High Feature Name Definition Low High
Regional Features: (fg: foreground; bg: background

Global Features: Object Features: d (Jg: Joreg 5 & )
brightness 0.3R + 0.6G + 0.1B | . fgbg_area_ratio # pixels in fg / bg

object_cnt # of objects detected
contrast Michelson contrast . bgfg brightness_diff brightness of bg - f

top__space bounding box top to top &18-D15 B 8 s718
dynamic_range grayscale (max - min) | - of image in px |
width the width of the photo in px bounding box bottom bgfg contrast_diff  contrast of bg - fg
height the height of the photo in px bottom_space to bottom of image _
resolution width * height / 10° RGB distance from a

bounding box left to bg_lightness

left of 1mage

left_space pure white image

bounding box right to bg_nonuniformity standard deviation of

right_space

right of image - bg pixels in grayscale
X_asymmetry abs(right_space - left_space)/width
y_asymmetry abs(top_space - bottom_space)/height
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MODELING IMAGE QUALITY

Understanding: ordered logistic regression predicting image quality

Feature Name Definition Low  High Feature Name Definition Low  High Feature Name Definition Low  High
Regional Features: (fe: foreground; bg: background
Global Features: Object Features: 5 /8- Joreg & & )
hrightness 0.3R + 0.6G + 0.1B | . fgbg_area_ratio # pixels in fg / bg
object_cnt # of objects detected
contrast Michelson contrast . bgfg brightness_diff brightness of bg - f
top__space bounding box top to top &18-216 B 8 &718
dynamic_range grayscale (max - min) | - of image in px |
width the width of the photo in px bounding box bottom bgfg_contrast_diff  contrast of bg - fg
height the height of the photo in px bottom_space to bottom of image _
resolution width * height / 10° RGB distance from a

bounding box left to bg_lightness

left of image

left_space pure white image

' - . . standard deviation of
right_space bounding box right to bg_nonuniformity

right of image bg pixels in grayscale
X_asymmetry abs(right_space - left_space)/width
y_asymmetry abs(top_space - bottom_space)/height
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OUTLINE
Datasets Annotating Modeling Marketplace Design
Image Quality Image Quality Outcomes Implications
o o o o .

e Sales
e Perceived Trustworthiness
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MARKETPLACE OUTCOMES

Sales

e \We predict the image quality of the main eBay listing image using
model trained on annotated data

* \We conduct logistic regression controlling for number of days the
listing has been on market, the number of views, and price

* Image quality predicted by our models is associated with higher
likelihood that an item is sold (1.17x more for shoes, and 1.25x more
for handbags)
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MARKETPLACE OUTCOMES

Perceived Trustworthiness: three conditions
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MARKETPLACE OUTCOMES

Perceived Trustworthiness: three conditions

Marketplace
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MARKETPLACE OUTCOMES

Perceived Trustworthiness: results

“I believe that products from
these sellers will meet my

expectations when deliverc.”
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MARKETPLACE OUTCOMES

Perceived Trustworthiness: results

“I believe that products from
these sellers will meet my
expectations when delivered.”

Trust
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SUMMARY OF RESULTS

* We created a dataset of real marketplace images (25,000 images)
with reliable human-rated quality labels

* \We were able to model and predict image quality with decent
accuracy (=87%).

* We showed that predicted image quality is associated with higher
likelihood of sales through collaboration with eBay

* Through user experiment, we also showed that high quality user-
generated marketplace images selected by our models outperform
stock imagery in eliciting perceptions of trust from users
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LIMITATIONS AND FUTURE WORK

* Limited to two product categories
* One type of marketplace (buy-and-sell)

* Potential bias in quality prediction (especially involving
faces)
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OUTLINE
Datasets Annotating Modeling Marketplace Design
Image Quality Image Quality Outcomes Implications
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DESIGN IMPLICATIONS

Prediction-based

* Listing ranking in online marketplaces

e Automatic selection of thumbnail images

Understanding-based

* Real-time in-camera feedback to take better product photos

* Design for high-quality user-user-grated images instead of stock photos
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