UNDERSTANDING IMAGE QUALITY AND TRUST IN PEER-TO-PEER MARKETPLACES

Xiao Ma^[1] Lina Mezghani^[2*] Kimberly Wilber^[3*] Hui Hong^[4] Robinson Piramuthu^[4]

Mor Naaman^[1] Serge Belongie^[1]

- ^[1] Cornell Tech
- ^[2] École Polytechnique
- ^[3] Google Research
- ^[4] eBay, Inc.
- * Work done while at Cornell Tech

CONSIDER THE FOLLOWING SCENARIO

craigslist

A TALE OF THREE LISTINGS

Minfoxiao

IMAGES PLAY A CENTRAL ROLE IN MANY MARKETPLACES Lodging (e.g., Airbnb)

Units with verified photos (taken by Airbnb's photographers) generate additional revenue of \$2,521 per year on average.

For an average Airbnb property (booked for 21.057% of the days per month), this corresponds to 17.51% increase in demand due to verified photos.

Zhang, S., Lee, D., Singh, P. V., & Srinivasan, K. (2017). How Much Is an Image Worth? Airbnb Property Demand Estimation Leveraging Large Scale Image Analytics.

IMAGES PLAY A CENTRAL ROLE IN MANY MARKETPLACES Dating (e.g., Hinge)

https://medium.com/@Hinge/hinge-the-relationship-app-28f1000d5e76

RESEARCH QUESTIONS

RQ1: Can human raters reliably judge the quality of marketplace images?

quality marketplace images?

images?

- RQ2: Can we build models to reliably predict high v.s. low
- RQ3: What characteristics make high quality marketplace
- RQ4: Does image quality affect marketplace outcomes?

Annotating Modeling Datasets Image Quality Image Quality

SUMMARY OF RESULTS

- We created a dataset of real marketplace images (**~25,000 images**) with reliable human-rated quality labels
- We were able to model and predict image quality with decent accuracy (**≈87%**).
- We showed that predicted image quality is associated with higher likelihood of sales through collaboration with eBay
- Through user experiment, we also showed that high quality usergenerated marketplace images selected by our models outperform stock imagery in eliciting perceptions of trust from users

Ginfoxiao

Annotating Modeling Datasets Image Quality Image Quality

Annotating Modeling Datasets Image Quality Image Quality

Public

Shoes: ~12,000 Handbags: ~12,000

Annotated with image quality labels

DATASETS

Private

Shoes: ~132,000 Handbags: ~32,000

With information associated with views and sales

ANNOTATING IMAGE QUALITY

1. Pilot

- 50 images per batch
- 3 annotators per batch
- Rate each image from 1 (not appealing) to 5 (appealing)
- Open-ended questions to monitor task understanding

2. Label

~20,000 images per product category

ANNOTATING IMAGE QUALITY

1. Pilot

- 50 images per batch
- 3 annotators per batch
- Rate each image from 1 (not appealing) to 5 (appealing)
- Open-ended questions to monitor task understanding

2. Label

~20,000 images per product category

3. Filter

- Standardize scores per rater
- Filter out images with high standard deviation across raters
- Average pairwise Pearson's: 0.70

4. Discretize

Model

- Label smoothing: uncertainty in the data

Evaluation

- "forced-choice" removing neutral output

Prediction

• Fine-tuned a pre-trained Inception v3 network architecture provided by PyTorch, after removing the last fully connected layer and replacing it with a linear map down to 3 output dimensions (bad, neutral, good).

• By this metric, our best shoe model achieved 84.34% accuracy and our best handbag model achieved 89.53%. (outperforms an aesthetic quality baseline model fine tuned on AVA dataset — 68.8%, and 78.8%)

Understanding: qualitative analysis of product photography tutorials

- Lighting (57%): soft, good, bright
- Angles (40%): multiple angles, front, back, top, bottom, details
- Context (29%): in use
- Focus (22%): sharp, high resolution
- Post-Production (22%): white balance, lighting, exposure
- Crop (14%): zoom, scale

• Background (mentioned in 57% of the tutorials): white, clean, uncluttered

Understanding: extracting corresponding features computationally

Feature Name	Definition	Low	High	Feature Name	Definition	Low	High	Feature Name	Definition	Low
Global Features:				Object Features:				Regional Features: (f	fg: foreground; bg: back	ground)
brightness	0.3R + 0.6G + 0.1B			object_cnt	# of objects detected			fgbg_area_ratio	# pixels in fg / bg	Store State
contrast	Michelson contrast	YU		ton snace	bounding box top to top			bgfg_brightness_diff	brightness of bg - fg	E
dynamic_range	grayscale (max - min)			top_space	of image in px			1 6 1 6		
width	the width of the photo in	n px		hottom space	bounding box bottom		00	bgfg_contrast_diff	contrast of bg - fg	
height resolution	the height of the photo i width * height $/ 10^6$	in px		bottom_space	to bottom of image				RGB distance from a	
resolution	width height / 10			left_space	bounding box left to left of image	LS		bg_lightness	pure white image	
				right_space	bounding box right to right of image	C.		bg_nonuniformity	standard deviation of bg pixels in grayscale	
				x_asymmetry	abs(right_space - left_s	pace)/wi	idth			
				y_asymmetry	abs(top_space - bottom	_space)/	height			

Understanding: ordered logistic regression predicting image quality

Feature Name	Definition	Low	High	Feature Name	Definition	Low	High	Feature Name	Definition	Low
Global Features.				Object Fostures.				Regional Features: (j	fg: foreground; bg: back	kground
orightness	0.3R + 0.6G + 0.1B			object ont	# of objects detected			fgbg_area_ratio	# pixels in fg / bg	SH
contrast	Michelson contrast	90		object_ent	hounding box ton to ton			bgfg_brightness_diff	brightness of bg - fg	E
dynamic_range width	grayscale (max - min) the width of the photo in	n px		top_space	of image in px			bgfg_contrast_diff	contrast of bg - fg	
height resolution	the height of the photo is width $*$ height / 10^6	in px		bottom_space	to bottom of image			bg_lightness	RGB distance from a	a
				left_space	left of image	L.			pure white hhuge	
				right_space	bounding box right to right of image	C7		bg_nonuniformity	standard deviation of bg pixels in grayscale	f
				x_asymmetry	abs(right_space - left_s	pace)/w	idth			
				y asymmetry	abs(top space - bottom	space)/	height			

Modeling Annotating Datasets Image Quality Image Quality

- Sales
- Perceived Trustworthiness

0	٢	٦
L	l	J

- model trained on annotated data
- We conduct logistic regression controlling for number of days the listing has been on market, the number of views, and price
- Image quality predicted by our models is associated with higher likelihood that an item is sold (1.17x more for shoes, and 1.25x more for handbags)

Sales

• We predict the image quality of the main eBay listing image using

Perceived Trustworthiness: three conditions

Perceived Trustworthiness: three conditions

Poor quality (predicted)

Good quality (predicted)

Stock images

Perceived Trustworthiness: results

"I believe that products from these sellers will meet my expectations when delivered."

Perceived Trustworthiness: results

"I believe that products from these sellers will meet my expectations when delivered."

SUMMARY OF RESULTS

- We created a dataset of real marketplace images (**~25,000 images**) with reliable human-rated quality labels
- We were able to model and predict image quality with decent accuracy (**≈87%**).
- We showed that predicted image quality is associated with higher likelihood of sales through collaboration with eBay
- Through user experiment, we also showed that high quality usergenerated marketplace images selected by our models outperform stock imagery in eliciting perceptions of trust from users

Ginfoxiao

LIMITATIONS AND FUTURE WORK

- Limited to two product categories
- One type of marketplace (buy-and-sell)
- Potential bias in quality prediction (especially involving) faces)

Annotating Modeling Datasets Image Quality Image Quality

DESIGN IMPLICATIONS

Prediction-based

- Listing ranking in online marketplaces
- Automatic selection of thumbnail images

Understanding-based

- Real-time in-camera feedback to take better product photos • Design for high-quality user-user-grated images instead of stock photos

THANK YOU

Xiao Ma^[1] Lina Mezghani^[2*] Kimberly Wilber^[3*] Hui Hong^[4] Robinson Piramuthu^[4]

Mor Naaman^[1] Serge Belongie^[1]

UNDERSTANDING IMAGE QUALITY AND TRUST IN **PEER-TO-PEER MARKETPLACES**

^[1] Cornell Tech

- ^[2] École Polytechnique
- ^[3] Google Research
- ^[4] eBay, Inc.
- * Work done while at Cornell Tech

